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Abstract—The analysis and design of a small autonomous power 

system (SAPS) that contains renewable energy sources (RES) 

technologies can be challenging, due to the large number of 

design options and the uncertainty in key parameters. Renewable 

power sources add further complexity because their power 

output may be intermittent, seasonal, and non dispatchable. Due 

to this characteristic, reliability evaluation of a RES based SAPS 

cannot be implemented using the traditional deterministic and 

analytical methods. Moreover, in order to be complete, this 

evaluation has to be done within a cost-benefit framework. This 

paper investigates the effect of reliability worth in the optimal 

economic operation of a SAPS that is based on RES technologies, 

considering different scenarios. The optimization procedure is 

implemented with a combined genetic algorithm (GA) and local 

search procedure. In addition, this paper examines the effect of 

considering SAPS components forced outage rate in the obtained 

optimal solutions via Monte Carlo simulation (MCS). The main 

conclusion of this paper is that the optimal operation of a RES 

based SAPS depends largely on the consideration of reliability 

worth as well as the inclusion of components forced outage rate. 

Keywords-small autonomous power systems; renewable energy 

sources; power systems reliability; reliability worth; Monte Carlo 

simulation; customer damage functions; optimization; genetic 

algorithms 

I.  INTRODUCTION 

A small autonomous power system (SAPS) is a system that 
generates electricity in order to serve a nearby low energy 
demand, and it usually operates in areas that are far from the 
grid. Generally, there are three methods of supplying energy in 
rural areas: grid extension, use of fossil fuel generators, and 
hybrid power systems with renewable energy sources (RES). In 
isolated or remote areas, the first two methods can be very 
expensive. Grid electrification costs more than $3000 per 
connection [1], while the cost of fossil fuel delivery in these 
areas may be greater than the cost of the fuel itself. 

Renewable energy sources (RES) can often be used as a 
primary source of energy in such a system, as they are usually 
present in geographically remote and demographically sparse 
areas. However, since renewable technologies such as wind 
turbines (WTs) and photovoltaics (PVs) are dependent on a 
resource that is not dispatchable, there is an impact on the 
reliability of the electric energy of the system, which has to be 
considered [2]. The basic way to solve this problem is to use 
storage and/or dispatchable generators, such as diesel 
generators. 

Due to the unique characteristics of SAPS, reliability 
evaluation is crucial in these systems. The most traditional 
methods for the reliability evaluation of SAPS are mainly 
deterministic techniques. However, these techniques do not 
define consistently the true risk of the system, as they can lead 
to very divergent risks even for systems that are very similar 
[3]. In addition, these techniques cannot be extended to include 
intermittent sources, such as wind energy [4]. A second 
approach for reliability evaluation of power systems is direct 
analytical methods. These methods overcome the problems of 
deterministic techniques, but they cannot completely recognize 
the chronological variation of intermittent sources such us wind 
speed and solar energy. These factors can be incorporated 
using the Monte Carlo simulation (MCS), which however 
increases significantly the computation time. 

This paper investigates the effect of reliability worth on the 
optimal economic operation of a SAPS that is based on RES 
technologies. The location of the studied system is in Chania 
region, Greece. The optimization procedure is implemented 
with a combined genetic algorithm (GA) and local search 
procedure. GA is a powerful optimization technique that has 
been proposed for the solution of a variety of problems, 
including optimal SAPS sizing [5]-[6]. In the optimization 
procedure, the objective function is the minimization of SAPS 
cost of energy (in €/kWh), and three scenarios are examined: 
(1) no consideration of reliability worth, (2) consideration of 

Proceedings of PMAPS 2012, Istanbul, Turkey, June 10-14, 2012

762



reliability worth for agricultural load type, and (3) 
consideration of reliability worth for residential load type. In 
addition, this paper examines the effect of considering SAPS 
components forced outage rate in the obtained optimal 
solutions for the above three examined scenarios. This analysis, 
which is implemented via MCS, aims to highlight the 
difference between the results obtained from a typical SAPS 
optimization procedure, and the results of an approach that 
takes into account reliability issues related to the operation of 
the studied system. 

The paper is organised as follows. Section II presents 
information about reliability analysis of power systems, as well 
as details about the calculation of reliability worth. Section III 
formulates the optimization problem, whereas Section IV 
presents SAPS modelling details. Section V provides a brief 
description of the examined system and compares the results of 
the optimization procedure and the MCS. Section VI concludes 
the paper. 

II. SAPS RELIABILITY ANALYSIS 

A variety of probabilistic indices can be calculated, in order 
to evaluate the performance of a power system in a reliability 
framework. The two basic probabilistic indices used are the 
loss of load expectation (LOLE) and the loss of energy 
expectation (LOEE). LOLE is defined as the average number 
of hours for which the load is expected to exceed the available 
capacity. On an annual basis, LOLE can be expressed 
mathematically as: 

 ∑
∆

⋅∆=

t

outage ittLOLE )(  (1) 

where toutage(i) is equal to 1 for the case that the load in time 
step i is greater than the generating capacity plus the battery 
storage level and 0 otherwise. LOEE is defined as the expected 
energy (in kWh) that will not be supplied when the load 
exceeds the available generation, and can be expressed as: 

 ∑
∆

⋅∆=

t

unserved ietLOEE )(  (2) 

where eunserved(i) is the energy not supplied in the time step i of 
the year. However, the actual benefits of a power system’s 
operation can only be assessed by conducting relevant cost and 
reliability studies. It is therefore important to determine the 
optimal reliability level at which the reliability investment 
achieves the best results in reducing the customer damage costs 
due to power supply interruptions. This approach can be 
expressed mathematically as the minimization of total cost, 
which is equal to the sum of life cycle cost and customer 
damage cost. 

For the calculation of the expected customer damage cost, the 
customer damage functions (CDFs) have been used. The CDF 
is an index (expressed mainly in $/kW) that depends on the 
type of user and the interruption duration. There are a few 
studies that contain interruption cost data. Reference [3] 

contains data for the power utilities of Canada. Similar studies 
in Greece [7] have shown coincidence with the Canadian 
results. The values of CDFs, limited for the type of users that 
are considered in our study, are presented in Table I. 
Interruption costs for durations different than the values shown 
in Table I were estimated using the same slope of the straight 
line joining the two nearest duration values of Table I. 

TABLE I.  CDF VALUES (€/KW) 

Interruption duration 
User sector 

20 min 1 h 4 h 8 h 

Agricultural 0.2541 0.4807 1.5289 3.0519 
Residential 0.0689 0.3570 3.6400 11.6222 

 
The CDF values can be converted into an extended index 

that links system reliability with customer interruption costs. 
One suitable form is the interrupted energy assessment rate 
(IEAR), expressed in €/kWh of unsupplied energy. The 
estimation of the IEAR indicates the severity, frequency and 
generation of the expected states of the generation model. In 
order to compute the IEAR, the expected customer interruption 
cost (ECOST) in €/yr must be estimated first, taking into 
account the duration of interruption, the value of CDF and the 
unserved energy of each interruption. Then, IEAR can be 
calculated as follows: 

 
LOEE

ECOST
IEAR = . (3) 

For the investigation of SAPS performance, six reliability 
indices have been selected:  

1. LOLE. 

2. LOEE. 

3. Energy index of unreliability (EIU) that normalizes 
LOEE by dividing it with the annual energy demand.  

4. Frequency of interruptions (FOI), i.e., the expected 
number of times that loss of load occurs per year. 

5. Duration of interruptions (int), DOI, which is equal to 
LOLE/FOI, expressed in h/int. 

6. Energy not supplied index (ENSI) that is equal to 
LOEE/FOI, expressed in kWh/int. 

III. PROBLEM FORMULATION 

The SAPS optimal sizing problem has to fulfill the 
objective defined by (4) subject to the constraints (6)-(9). This 
problem is solved for three different scenarios: (1) no 
consideration of reliability worth, (2) consideration of 
reliability worth for agricultural load type, and (3) 
consideration of reliability worth for residential load type. 

A. Objective Function 

Minimization of system’s cost of energy, COE : 

 )min(COE  (4) 

The COE (€/kWh) of SAPS is calculated as follows: 
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edanloadserv

antot

E

C
COE =  (5) 

where 
antotC  (€) is the total annualized cost and 

edanloadservE  

(kWh) is the total annual useful electric energy production. 

antotC  takes into account the annualized capital costs, the 

annualized replacement costs, the annual operation and 
maintenance (O&M) costs, and the annual fuel costs (if 
applicable) of system’s components. In case of considering 
customer damage costs, the value of COE includes IEAR. 

B. Constraints 

1. Unmet load constraint: 

 maxUL

anload

year

t

t

UL f
E

tUL

f ≤

∆⋅

=
∑
∆

∆

 (6) 

where ULf  is the annual unmet load fraction, tUL∆  (kW) is 

the unmet load during the simulation time step t∆  (h), anloadE  

(kWh) is the total annual electric energy demand, and maxULf  

is the maximum allowable annual  unmet load fraction. By its 

definition, ULf  is identical with EIU. In this paper, the value 

of maxULf  has been taken equal to 5%. 

2. Minimum renewable fraction constraint: 

 10where minmin ≤≤≥= RESRES

antot

anRES
RES ff

E

E
f  (7) 

where 
RESf  is the RES fraction of the system, 

anRESE  (kWh) 

is the total annual renewable energy production, 
antotE  (kWh) 

is the total annual energy production of the system, and 

minRESf  is the minimum allowable RES fraction. In this paper, 

the value of minRESf  has been taken equal to 80%. As a result, 

the energy production of studied SAPS is based mainly on 
RES technologies. 

3. Components’ size constraints: 

 compsizecomp ∀≥ 0  (8) 

 compsizesize compcomp ∀≤ max  (9) 

where 
compsize  is the size of system’s component comp , and 

maxcompsize  is the maximum allowable size of comp . The 

values of maxcompsize  are shown in Table II. 

IV. SAPS COMPONENTS AND MODELING 

The considered SAPS has to serve electrical load, and it can 
contain seven component types: 

1. WTs. 

2. Polycrystalline silicon (poly-Si) PVs. 

3. Generator with diesel fuel. 

4. Lead-acid batteries. 

5. Converter. 

The modeling of SAPS components is implemented as 
follows. The WT modeling is implemented using a power 
curve profile that is based on manufacturer’s data. The 
selected WT has the following characteristics: rated power 

10kW AC, cut-in speed ( inV ) 3 m/s, and cut-out speed ( outV ) 

24 m/s. For the WT power curve fitting, a seventh order 
polynomial expression has been selected, as it provides 
accurate correlation with real data, while it presents 
exclusively positive values for the generated power in the 

interval ][ outin VV . 

In the PV modeling, the output of the PV array 
PVP  (in 

kW) is calculated from [8]: 

 ))(1( TSTCC

STC

A
STCPVPV CTT

G

G
PfP ⋅−+⋅⋅⋅=  (10) 

where PVf  is the PV derating factor, STCP  is the nominal PV 

array power in kWp under standard test conditions (STC), AG  

is the global solar radiation incident on the PV array in 

kW/m2, 
STCG  is the solar radiation under STC (1 kW/m2), 

CT  

is the temperature of the PV cells, 
STCT  is the STC 

temperature (25°C), and 
TC  is the PV temperature coefficient 

(-0.004/°C for poly-Si). The PV derating factor is a scaling 
factor applied to the PV array output to account for losses, 
such as dust cover, aging and unreliability of the PV array, and 

is considered to be equal to 0.80. 
CT  can be estimated from 

the ambient temperature 
aT  (in °C) and the global solar 

radiation on a horizontal plane G  (in kW/m2) using (10) [9]: 

 G
NOCT

TT aC ⋅
−

+=
8.0

)20(
 (11) 

where NOCT  is the normal operating cell temperature, which 
is usually obtaining the value of 48°C. 

The diesel generator fuel consumption F  (L/kWh) is 
assumed to be a linear function of its electrical power output 
[10]: 

 PPF rated ⋅+⋅= 246.008415.0  (12) 

where ratedP  is generator’s rated power and P  is generator’s 

output power. Lead-acid batteries have been modeled 
assuming maximum charge and discharge current equal to 
C/5. Finally, converter efficiency has been taken equal to 
90%. 

Renewable power sources (WTs and PVs) have a priority in 
supplying the electric load. If they are not capable to fully 
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serve the load, the remaining electric load has to be supplied 
by generators and/or batteries. From all possible combinations, 
it is selected the one that supplies the load at the least cost. 

An additional aspect of system operation arises, which is 
whether (and how) the diesel generator should charge the 
battery bank. Two common control strategies that can be used 
are load following (LF) strategy and cycle charging (CC) 
strategy. It has been found [11] that over a wide range of 
conditions, the better of these two strategies is virtually as 
cost-effective as an ideal predictive strategy, which assumes 
the existence of perfect knowledge in future load and wind 
conditions. In the LF strategy, batteries are not charged at all 
with diesel-generated energy; the diesel operating point is set 
to match the instantaneous required load. LF strategy tends to 

be optimal in systems with a lot of renewable power, when the 
renewable power output sometimes exceeds the load. In the 
CC strategy, whenever the diesel generator needs to operate to 
serve the primary load, it operates at full output power. A 

setpoint state of charge, aSOC , has also to be set in this 

strategy. The charging of the battery by the diesel generator 

will not stop until it reaches the specified aSOC . In this paper, 

three alternative values of aSOC  have been considered: 80%, 

90% and 100%, so the total number of examined dispatch 
strategies is 4. CC strategy tends to be optimal in systems with 
little or no renewable power. 

TABLE II.  COMPONENT CHARACTERISTICS 

Component sizecompmax Increment Capital cost Replacement cost O&M cost Fuel cost Lifetime 

WTs (10kW rated) 6 WT 1 WT 25,000 €/WT 20,000 €/WT 500 €/y - 20 y 
PVs 20 kWp 0.5 kWp 3,000 €/kWp 2,500 €/kWp 0 - 25 y 
Diesel generator 20 kW Variable 300 €/kW 300 €/kW 0.01 €/h per kW 1.5 €/L (diesel) 20,000 oper. hours 
Batteries (1250Ah, 6V) 160 bat. 8 bat. 600 €/bat. 600 €/bat. 10 €/bat. - 9,000 kWh 
Converter 20 kW 1 kW 1,000 €/kW 1,000 €/kW 0 - 15 y 

TABLE III.  OPTIMAL SOLUTIONS OF GA COMBINED WITH LOCAL SEARCH 

Scenario WTs 
PVs 

(kWp) 

Dsl 

(kW) 
Batteries 

Converter 

(kW) 

Dispatch 

strategy 

COE 

(€/kWh) 

LOLE 

(h/y) 

LOEE 

(kWh/y) 
EIU 

FOI 

(int./y) 

DOI 

(h/int.) 

ENSI 

(kWh/int.) 

No customer damage cost 3 11 3 48 13 LF 0.2156 895 3882.92 4.986% 435 2.057 8.926 
Agricultural CDF 3 7.5 15 56 15 LF 0.2478 10.67 10.18 0.013% 46 0.232 0.221 
Residential CDF 3 7 15 48 16 LF 0.2462 13.83 13.20 0.017% 56 0.247 0.236 
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Figure 1.  GA convergence considering: (a) no customer damage cost, (b) agricultural CDF, (c) residential CDF 

V. RESULTS AND DISCUSSION 

A. Case Study System 

In the considered SAPS, the project lifetime and the 
discount rate are assumed to be 25 years and 6%, respectively. 
The simulation time step ∆t is taken equal to 10 min (1/6 h). 
The annual wind, solar and ambient temperature data needed 
for the estimation of WT and PV performance refer to 
measurements for the mountainous region of Keramia (altitude 
500 m), in Chania, Crete, Greece. The annual SAPS peak load 
has been considered equal to 20 kW, whereas the necessary 
SAPS load profile was computed by downscaling the actual 
annual load profile of Crete island, which is the largest 

autonomous power system of Greece, with 600 MW peak load 
and 17% min/max annual load. An additional noise has been 
added in the load profile, in order to reduce the min/max 
annual load ratio from 17% (Crete power system) to 12% 
(SAPS). 

The WT hub height has been considered 25 m, and the PVs 
do not include tracking system. The cost, lifetime, and size 
characteristics for each component are presented in Table II. 
For each component, the minimum size is equal to zero. 
Moreover, with the exception of diesel generator, all 
components have constant increment of their size, as Table II 
shows. The considered sizes for the diesel generator are 0, 3, 
5, 8, 10, 12, 15, and 20 kW. For the SAPS sizing problem of 
Table II, the complete enumeration method requires: 
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i.e., approximately 4 million evaluations in order to find the 
optimal COE; in (12) Disp. denotes the number of dispatch 
strategies. The computational time for each COE evaluation is 
2.1 seconds. Consequently, the evaluations of the complete 
enumeration method require more than 3 months, for each one 
of the three considered scenarios. That is why it is essential to 
develop an alternative optimization method in order to solve 
the SAPS sizing problem in a fast and effective way. 

B. GA Implementation for SAPS Optimal Sizing 

Genetic algorithms (GAs) mimic natural evolutionary 
principles and constitute powerful search and optimization 
procedures. More specifically, binary GAs borrow their 
working principle directly from natural genetics, as the 
variables are represented by bits of zeros and ones. Binary GAs 
are preferred when the problem consists of discrete variables. 
The considered sizes of each SAPS component can take only 
discrete values, so the binary GA is proposed for the solution 
of SAPS optimal sizing problem. 

In the binary GA, two alternative GA coding schemes can 
be used: conventional binary coding and Gray coding. In the 
proposed GA, each chromosome consists of 6 genes, of which 
the first 5 genes represent the SAPS component sizes (WT, PV, 
diesel generator, batteries and converters), while the sixth gene 
refers to the adopted dispatch strategy (LF or CC). For the 
handling of constraints, the penalty function approach is 
adopted, in which an exterior penalty term is used that 
penalizes infeasible solutions. Since different constraints may 
take different orders of magnitude, prior to the calculation of 
the overall penalty function, all constraints are normalized. 

The optimum configuration parameters of the adopted GA 
are: population size Npop=50, number of generations gn=15, 
Gray coding, tournament selection, uniform crossover, and 
0.01 mutation rate [6]. Additionally, the proposed GA is 
combined with local search procedure, in order to ensure that 
the selected solution is optimal compared to its neighbor 
solutions. Table III presents the optimal configurations and the 
six reliability indices for the three examined scenarios. As it 
can be seen, the consideration of no customer damage cost 
leads to a solution that presents the lowest COE. On the other 
hand, in this case the operation of SAPS is not the most 
reliable, since all reliability indices have their highest possible 
values in order the SAPS operation to be feasible, according to 
the problem constraints. The consideration of CDF increases 
the COE and improves significantly the reliability of the 
system by decreasing the PV size and increasing the diesel 
generator size. It can be seen that the consideration of either 
agricultural CDF or residential CDF provides almost identical 
results. This can be explained by the fact that agricultural CDF 
values are larger for small interruptions, but significantly lower 
for larger interruptions (more than 1 hour), as Table I shows. 
The optimal state is a compromise between these two 
situations, as reliability indices of Table III show. In all cases, 
the adopted dispatch strategy is LF, due to the large portion of 
RES technologies in energy production. The total number of 
performed objective function (COE) evaluations for the 

combined GA-local search procedure was 930 for all scenarios. 
Fig. 1 shows the GA convergence for the three examined 
scenarios of Table III. 

TABLE IV.  MCS RESULTS CONSIDERING NO CUSTOMER DAMAGE COST 

Index Min Max Average 
Standard 

deviation 

Coef. of 

variation 

COE (€/kWh) 0.2169 0.2246 0.2208 0.0015 0.0068 
LOLE (h/y) 1055.3 1410.7 1221.8 81.097 0.0664 
LOEE (kWh/y) 3896.1 5825.3 4663.6 378.19 0.0811 
EIU 5.00% 7.48% 5.99% 0.49% 0.0818 
FOI (int./y) 377 612 473.60 51.87 0.1095 
DOI (h/int.) 2.3028 2.9156 2.5941 0.1572 0.0606 
ENSI (kWh/int.) 8.4702 11.9126 9.8983 0.7057 0.0713 

TABLE V.  MCS RESULTS CONSIDERING AGRICULTURAL CDFS  

Index Min Max Average 
Standard 

deviation 

Coef. of 

variation 

COE (€/kWh) 0.2481 0.2975 0.2693 0.0103 0.0382 
LOLE (h/y) 174.83 596.17 353.75 87.05 0.2461 
LOEE (kWh/y) 20.5 1839.9 803.5 387.4 0.4821 
EIU 0.026% 2.36% 1.03% 0.50% 0.4854 
FOI (int./y) 788 1062 901.01 57.27 0.0636 
DOI (h/int.) 0.2119 0.5782 0.3888 0.0741 0.1906 
ENSI (kWh/int.) 0.0249 1.9129 0.8747 0.3835 0.4384 

TABLE VI.  MCS RESULTS CONSIDERING RESIDENTIAL CDFS 

Index Min Max Average 
Standard 

deviation 

Coef. of 

variation 

COE (€/kWh) 0.2464 0.3858 0.2930 0.0241 0.0823 
LOLE (h/y) 176.33 641.00 361.98 89.51 0.2473 
LOEE (kWh/y) 29.38 2331.8 863.64 407.89 0.4723 
EIU 0.038% 2.99% 1.11% 0.52% 0.4685 
FOI (int./y) 766 1034 876.13 57.87 0.0661 
DOI (h/int.) 0.2172 0.6501 0.4090 0.0778 0.1902 
ENSI (kWh/int.) 0.0362 2.3697 0.9659 0.4101 0.4246 

 

C. Consideration of Components Forced Outage Rate 

In the analysis of Section V.B, no forced outage rate for 
any component of the system has been taken into account, in 
order to focus on the interruptions driven by the incapability of 
the system to meet the load demand. However, in order to 
evaluate more realistically the performance of the system, an 
analysis of components forced outage rate has to be included. 
This task is crucial especially for a SAPS, because there is no 
other way to supply its load other than by itself. The analysis is 
applied to the three optimal solutions shown on Table III. For 
each one of them, a MCS is applied for a total number of 100 
runs.  

The consideration of forced outage rate is applied to the 2 
SAPS components that contain rotating parts: WTs and diesel 
generator. For the WTs, a forced outage rate of 4% for each 
WT has been considered, with mean time to failure (MTTF) 
equal to 1920 h and mean time to repair (MTTR) equal to 80 h 
[4]. For the diesel generator, it is assumed that it needs 
scheduled maintenance every 1000 h of operation. The 
duration of the maintenance follows uniform distribution in the 
hour interval [2, …, 24]. Moreover, a starting failure of 1% is 
included in the evaluation, while the repairing process follows 
the same distribution with the maintenance process [2]. 
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The obtained results of MCS for the three examined cases 
are shown in Tables IV to VI. These results include the 
minimum, maximum and average values, as well as the 
standard deviation of the six reliability indices and COE. 
Moreover, the (dimensionless) coefficient of variation is 
calculated, which is the ratio of the standard deviation to the 
mean, as a measure of variability. As it can be seen, the 
consideration of forced outage rate increases significantly the 
values of the basic reliability indices (LOLE, LOEE, EIU) and 
COE. In some cases, the values of the remaining reliability 
indices may be smaller compared to these of Table II, but this 
does not mean that the performance is better. For example, the 
low values of FOI are combined with the large values of DOI 
and ENSI, resulting in lower number of interruptions that have 
higher duration. 
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Figure 2.  COE histogram for agricultural load. 
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Figure 3.  COE histogram for residential load. 

Another interesting conclusion drew from the results shown 
in Table IV to VI is the higher variability (denoted by 
coefficient of variation) of the basic reliability indices (LOLE, 
LOEE, EIU) and COE, in the scenarios of considering 
customer damage costs. These two scenarios (agricultural and 
residential) have no significant difference in variability 
between them, with the exception of COE. This exception can 

be explained by the fact that the residential customer damage 
cost is increased exponentially with the increase of interruption 
duration (see Table I), affecting concurrently COE. Figs. 2 and 
3 present the variation of COE for these two scenarios. 

VI. CONCLUSIONS 

The reliability evaluation of a SAPS that is based on 
renewable energy technologies is a complex and time 
consuming task, due to the intermittent nature of renewable 
resources, their variation, the high modularity of each part of 
the system, and the considered assumptions for the reliability 
analysis. In most cases, the optimal sizing procedure of such 
systems takes into account reliability issues in a generic 
framework, using general constraints (such as maximum unmet 
load constraint). However, in order to be complete, this 
analysis has to take into account the effect of two more 
parameters: the reliability worth as well as the forced outage 
rate of SAPS components. This paper shows that the 
consideration of the reliability worth and the forced outage rate 
in the analysis changes significantly the obtained results. 
Moreover, the operation of a real SAPS, as computed by 
considering the above two parameters, will be much different 
than the operation of a SAPS ignoring both the reliability worth 
and the forced outage rate. This paper also shows that the type 
of load, which changes the reliability worth, may also affect the 
performance of a SAPS. 
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